Key parts of a fruit flys genetic makeup have finally been decoded


Your ads will be inserted here by

Easy Plugin for AdSense.

Please go to the plugin admin page to
Paste your ad code OR
Suppress this ad slot.

Some of the most important chapters in fruit flies genetic instruction book have finally been decoded.

For the first time, researchers have deciphered, or sequenced, the genetic makeup of all of a multicellular organisms centromeres — and discovered stretches of DNA that may be key in divvying up chromosomes. Errors in doing that job can lead to cancer, birth defects or death. The team reported the achievement May 14 in PLOS Biology.

Centromeres, which give most chromosomes their characteristic X shape, help move chromosomes in dividing cells. “The chromosome is a bus, and our DNA and genes are the passengers. The centromere is the bus driver,” says Beth Sullivan, a geneticist and centromere biologist at Duke University School of Medicine not involved in the study. “Its what moves the chromosome, after the DNA has been copied, into new daughter cells.”

Until now, scientists have known very little about these genetic bus drivers. Some centromeres from corn, horses, yeast and other fungi — and one human one that drives the Y chromosome — have been characterized. But mostly what scientists knew about centromeres is that they are incredibly long stretches of repetitive DNA.

Although scientists reported in 2000 that theyd finished reading the entire Drosophila melanogaster instruction book, or genome, in truth, researchers had skipped over the flies centromeres and other repetitive DNA. (The human genome is also not really complete; human centromeres, except for that of the Y chromosome, are still mysteries.)

The reason for the oversight was technical: To sequence the genome — meaning determine the order of DNAs chemical letters, known as bases — scientists first had to chop the DNA into tiny pieces about 150 bases long. Computers can put the genome together by finding where two pieces match up. Centromeres tend to repeat the same letters over and over again and can stretch for millions of bases, so many of the small bits look alike. “Its like trying to put together a jigsaw puzzle of a blue sky when all the puzzle pieces look the same,” says Amanda Larracuente, an evolutionary geneticist at the University of Rochester in New York.

Larracuente and colleagues used new technology to sequence stretches of DNA 10,000 to 100,000 bases long. “Its like having much bigger puzzle pieces,” Larracuente says, “So now we might be able to catch a wisp of a cloud in our blue-sky puzzle pieces, and that makes it a lot easier to figure out how these pieces of DNA fit together.” The team also used several other techniques to fit their centromere puzzles together.

Those techniques should make it possible for other scientists to fill in gaps in other organisms genomes, says Gernot Presting, a centromere biologist at the University of Hawaii at Manoa not involved in the study.

centromeres When the team finally finished putting the centromere pieces together, it found stretches of repetitive DNA interspersed with “islands” of jumping genes. These jumping genes, or retrotransposons, are ancient mobile pieces of DNA akin to viruses that can copy themselves and insert those copies in spots throughout the genome. Sometimes that jumping causes harm, such as when a retrotransposon lands in and breaks an important gene. But transposons also have shaped human evolution (SN: 5/27/17, p. 22).

Each fruit fly chromosomes centromere is unique, although all have the same basic structure of retrotransposon islands — particularly the retrotranspRead More – Source